Электронная нагрузка с регулировкой тока до 8 А / 200 ватт

Схема электронной нагрузки на LM358 и транзисторах КТ818

Зачастую с проблемой поиска нужной нагрузки сталкиваются те радиолюбители, которые изучают силовую электронику. Проверяя выходные характеристики того или иного блока питания, будь он самодельный или промышленный, необходима нагрузка с возможностью регулировки. Самым простым решением этой проблемы является использование учебных реостатов, ламп, мощных керамических резисторов, автомобильных ламп и нихромового нагревательного элемента. В этих случаях регулировка тока значительно ограничена (в случае с реостатом) или же вовсе невозможна.

В электронной нагрузке вся мощность выделяется на силовых элементах – транзисторах. Такой вариант можно сделать на любую мощность, и они гораздо универсальнее, чем обычный реостат. Профессиональные лабораторные электронные нагрузки стоят кучу денег.

Электронная нагрузка с регулировкой тока

Теперь давайте разберем схему, составные элементы которой я взял здесь и адаптировал под имеющиеся у меня детали.

Цепь защиты составлена из плавкого предохранителя FU1 и диода VD1. Нагрузка выполнена на четырех транзисторах КТ818. У них приемлемые характеристики по току и рассеиваемой мощности, а также они сравнительно дешевые и широко распространены. Управление VT5 на транзисторе КТ815, а стабилизация на операционном усилителе LM358. Амперметр, показывающий ток, проходящий через нагрузку, я установил отдельно. Поскольку если амперметром заменить резисторы R3 и R4, то будет теряться часть тока, который потечет через VT5 и показания будут занижены. А судя по тому, как нагреваются КТ815, ток через них протекает приличный. Я даже подумываю, что между эмиттером VT5 и землей надобно поставить еще одно сопротивление на 50…200 Ом.

Электронная нагрузка в корпусе компьютерного БП

Отдельно надо рассказать о цепи R10…R13. Так как регулировка происходит не линейно, необходимо брать одно переменное сопротивление в 200…220 кОм с логарифмической шкалой, либо ставить два переменных резистора, которые обеспечивают плавное регулирование во всем диапазоне. При чем R10 (200кОм) регулирует ток от 0 до 2.5А, а R11 (10 кОм) при выкрученном в ноль R10 регулирует ток от 2.5 до 8 А. Верхний предел тока устанавливается резистором R13. При настройке будьте осторожны, если напряжение питания случайно попадет на третью ногу операционного усилителя, КТ815 открывается полностью, что с большой вероятностью приведет к выходу из строя всех силовых транзисторов.

Казалось бы, при таких мощных транзисторах, которые выдерживают до 80 вольт и 10 А, суммарная мощность должна быть не менее 3 кВт. Но, так как мы делаем «кипятильник» и вся мощность источника уходит в тепло, то ограничение накладывается показателем рассеиваемой мощности транзисторов. По даташиту она всего лишь 60 Вт на один транзистор, а с учетом того, что теплопроводность между транзистором и радиатором не идеальна, то фактическая рассеиваемая мощность и того меньше. И поэтому чтобы хоть как-то улучшить теплоотвод я прикрутил транзисторы VT1…VT4 непосредственно к радиатору без прокладок на теплопроводную пасту. При этом мне пришлось сделать специальные накладки на радиатор, чтобы он не замыкал на корпус.

Электронная нагрузка - готовое устройство

К сожалению, у меня не было возможности протестировать работу устройства во всем диапазоне напряжений. Но при 22V 5A нагрузка работает стабильно и не перегреваясь. Однако, как говорится, в бочке меда есть и ложка дегтя. Из-за недостаточной площади имевшегося у меня радиатора, при нагрузке более 130 ватт, через какое-то время (3…5 минут) транзисторы начинают перегреваться. Поэтому если будете собирать подобную схему, берите радиатор как можно большей площади и обеспечите ему надежное принудительное охлаждение в виде вентилятора.

Стоит особо подчеркнуть, что обязательно при наладке ставьте резистор R13 не менее 10 кОм. Потом по мере понимания, какой ток вам нужен, уменьшайте это сопротивление. 

Red Resistor 5864 10 апреля 2020 года
Рейтинг: 3.2/5 - 5 голосов

Другие интересные статьи